Humus composition of mineral–microbial residue from microbial utilization of lignin involving different mineral types

Author:

Wang Shuai12,Chen Dianyuan1,Zhang Xi3,Xu Junping4,Lei Wanying1,Zhou Changyan1,Chen Chen1,Li Fanghui1,Wang Nan1

Affiliation:

1. College of Agriculture, Jilin Agricultural Science and Technology University, Jilin 132101, People’s Republic of China.

2. Department of Biosystems Engineering and Soil Science, Institute of Agriculture, The University of Tennessee, Knoxville, TN 37996, USA.

3. College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China.

4. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100094, People’s Republic of China.

Abstract

This study explored the mineral contribution of lignin to humus (HS) formation through the change of HS composition in microbial–mineral residue (MMR). The liquid shake flask culture method was adopted to collect the MMR formed through the microbial utilization of lignin in the presence of goethite, bayerite, δ-MnO2, kaolinite, and montmorillonite. The carbon (C) contents of humic-like acid (HLA), fulvic-like acid (FLA), and humin-like (HLu) in MMR, represented as CHLA, CFLA, and CHLu, respectively, coupled with the ΔlogK of the HLA alkali-soluble extract and CHLA/CFLA ratio were analyzed at 10, 30, 60, and 110 d. In terms of improving HLA aggregated on minerals, the following rule was observed: goethite > bayerite > montmorillonite > kaolinite ≈δ-MnO2. Goethite was most likely to adsorb organic molecules with a high degree of polymerization. Compared with kaolinite and montmorillonite, goethite, bayerite, and δ-MnO2 were more helpful for decreasing the molecular weight and the degree of HLA condensation. Goethite, δ-MnO2, and montmorillonite presented the greatest advantages in enhancing the relative proportions of CHLA, CFLA, and CHLu, respectively, in MMR. In MMR formed in the presence of kaolinite, goethite, and bayerite, CHLA was decreased by 14.8%, 12.0%, and 5.8%, respectively, at the end of culture, whereas the CHLA associated with δ-MnO2 was increased by 12.0%. δ-MnO2 contributed the most to the conversion of CFLA to CHLA. Due to expandability and a much greater adsorption capacity, montmorillonite was most beneficial to the accumulation of CHLu.

Publisher

Canadian Science Publishing

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3