Relativistic many-body calculations of excitation energies and transition rates from core-excited states in silverlike ions

Author:

Safronova U I,Safronova A S

Abstract

Energies of [Kr]4d94f2, [Kr]4d94f5l, and [Kr]4d95l5l′ states (with l = s, p, d, f) for Ag-like ions with Z = 50–100 are evaluated to second order in relativistic many-body perturbation theory (RMBPT) starting from a Pd-like Dirac–Fock potential ([Kr]4d10). Second-order Coulomb and Breit–Coulomb interactions are included. Correction for the frequency dependence of the Breit interaction is taken into account in lowest order. The Lamb-shift correction to energies is also included in lowest order. Intrinsic particle–particle–hole contributions to energies are found to be 20–30% of the sum of the one- and two-body contributions. Transition rates and line strengths are calculated for the 4d–4f and 4d–5l electric-dipole (E1) transitions in Ag-like ions with nuclear charge Z = 50–100. RMBPT including the Breit interaction is used to evaluate retarded E1 matrix elements in length and velocity forms. First-order RMBPT is used to obtain intermediate coupling coefficients and second-order RMBPT is used to calculate transition matrix elements. A detailed discussion of the various contributions to the dipole matrix elements and energy levels is given for silverlike tungsten (Z = 74). The transition energies included in the calculation of oscillator strengths and transition rates are from second-order RMBPT. Trends of the transition rates as functions of Z are illustrated graphically for selected transitions. Additionally, we perform calculations of energies and transition rates for Ag-like W by the Hartree–Fock relativistic method (Cowan code) and the Multiconfiguration Relativistic Hebrew University Lawrence Atomic Code (HULLAC code) to compare with results from the RMBPT code. These atomic data are important in modeling of N-shell radiation spectra of heavy ions generated in various collision as well as plasma experiments. The tungsten data are particularly important for fusion application.PACS Nos.: 31.15.A–, 31.15.ag, 31.15.am, 31.15.aj

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3