Electrical characteristics and photolytic tuning of poly(3-hexylthiophene) thin film metal–insulator–semiconductor field-effect transistors (MISFETs)

Author:

Xie Z.,Abdou M. S. A.,Lu X.,Deen M. J.,Holdcroft S.

Abstract

In this paper, we present results on the electrical characteristics of both thick and thin film polymer metal–insulator–semiconductor field-effect transistors (MISFETs) based on poly(3-hexylthiophene) semiconducting substrate. These MISFETs were fabricated in eight steps using conventional semiconductor processing technology. The MISFETs had excellent current–voltage characteristics and showed little degradation with time. Electrical parameters of threshold voltage, mobility, and transconductance were − 1 V, 10−4–10−5 cm2 V−1 s−1, and 10−9 S, respectively. These values are typical of π-conjugated polymer-based MISFETs. Electrical transport in MISFETs were by both bulk (or resistive) and FET-like mechanisms in the thick film transistors. The resistive current component and the electrical characteristics were found to be tunable by photolytic degradation of the semiconducting polymer. In this process, the semiconducting π-conjugated regions were spatially converted to insulating regions by novel photo-oxidative chemistry. We were also successful in modelling the MISFETs as an intrinsic FET with parasitic source and drain resistances in series with it and a varistor (for the bulk current component) in parallel with the intrinsic FET. Using this circuit model, we obtained very good agreements between SPICE simulations and the experimental results.

Publisher

Canadian Science Publishing

Subject

General Physics and Astronomy

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3