Natural fire frequency for the eastern Canadian boreal forest: consequences for sustainable forestry

Author:

Bergeron Yves,Gauthier Sylvie,Kafka Victor,Lefort Patrick,Lesieur Daniel

Abstract

Given that fire is the most important disturbance of the boreal forest, climatically induced changes in fire frequency (i.e., area burnt per year) can have important consequences on the resulting forest mosaic age-class distribution and composition. Using archives and dendroecological data we reconstructed the fire frequency in four large sectors along a transect from eastern Ontario to central Quebec. Results showed a dramatic decrease in fire frequency that began in the mid-19th century and has been accentuated during the 20th century. Although all areas showed a similar temporal decrease in area burned, we observed a gradual increase in fire frequency from the west to Abitibi east, followed by a slight decrease in central Quebec. The global warming that has been occurring since the end of the Little Ice Age (~1850) may have created a climate less prone to large forest fires in the eastern boreal forest of North America. This interpretation is corroborated by predictions of a decrease in forest fires for that region of the boreal forest in the future. A longer fire cycle (i.e., the time needed to burn an area equivalent to the study area) has important consequences for sustainable forest management of the boreal forest of eastern Canada. When considering the important proportion of overmature and old-growth stands in the landscape resulting from the elongation of the fire cycles, it becomes difficult to justify clear-cutting practices over all the entire area as well as short rotations as a means to emulate natural disturbances. Alternative practices involving the uses of variable proportion of clear, partial, and selective cutting are discussed.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3