Geodynamic evolution of the Canadian Cordillera — progress and problems

Author:

Monger J. W. H.,Price R. A.

Abstract

The present geodynamic pattern of the Canadian Cordillera, the main features of which were probably established in Miocene time, involves a combination of right-hand strike-slip movements on transform faults along the continental margin, and, in the south and extreme north, convergence in subduction zones in which oceanic lithosphere moves beneath the continent, with consequent magmatism along the continental margin. In the southern Canadian Cordillera, geophysical surveys have outlined the subducting slab and the asthenospheric bulge that occurs beneath and behind the magmatic arc. They also show that there is now no root of thickened Precambrian continental crust beneath the tectonically shortened supracrustal strata in the southern parts of the Omineca Crystalline Belt and Rocky Mountain Belt.The Rocky Mountain, Omineca Crystalline, Intermontane, Coast Plutonic, and Insular Belts, the structural and physiographic provinces that dominate the present configuration of the Canadian Cordillera, were established with the initial uplift and the intrusion of granitic rocks in the Omineca Crystalline Belt in Middle and Late Jurassic time and in the Coast Plutonic Complex in Early Cretaceous time, and they dominated patterns of uplift, erosion and deposition through Cretaceous and Paleogene time. Their development may be due to compression with thrust faulting in the eastern Cordillera, and to magmatism that accompanied subduction and to accretion of an exotic terrane, Wrangellia, in the western Cordillera. Major right-lateral strike-slip faulting, which occurred well east of but sub-parallel with the continental margin during Late Cretaceous and Paleogene time, accompanied major tectonic shortening due to thrusting and folding in the Rocky Mountain Belt as well as the main subduction-related (?) magmatism in the Coast Plutonic Complex.The configuration of the western Cordillera prior to late Middle Jurassic time is enigmatic. Late Paleozoic and early Mesozoic volcanogenic strata form a complex collage of volcanic arcs and subduction complexes that was assembled mainly in the Mesozoic. The change in locus of deposition between Upper Triassic and Lower to Middle Jurassic volcanogenic assemblages, and the thrust faulting in the northern Cordillera may record emplacement of another exotic terrane, the Stikine block, in latest Triassic to Middle Jurassic time.The earliest stage in the evolution of the Cordilleran fold belt involved the protracted (1500 to 380 Ma) development of a northeasterly tapering sedimentary wedge that discordantly overlaps Precambrian structures of the cratonic basement. This miogeoclinal wedge may be a continental margin terrace wedge that was prograded into an ocean basin, but it has features that may be more indicative of progradation into a marginal basin in which there was intermittent volcanic activity, than into a stable expanding ocean basin of the Atlantic type.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3