The photochemical Beckmann rearrangement

Author:

Izawa H.,Mayo P. De,Tabata T.

Abstract

The direct irradiation of aryl aldoximes gives the amide (the photochemical Beckmann rearrangement) by intramolecular oxygen migration. This has been shown by the rearrangement of 18O-labelled benzaldoxime in the presence of p-tolualdoxime: no exchange of label was observed.The rearrangement usually gives the amide, but in the case of the anisyl derivative the anilide was also obtained. The highest quantum yield for benzamide formation noted (in acetic acid) was 0.034, but the figure is dependent on irradiation time. The results of low-temperature irradiation suggest that an oxazirane is an intermediate. Phenyl-N-methyl oxazirane is converted into the amide on irradiation (though not thermally) and it seems likely that the reaction is induced, under the conditions of the reaction, by benzylic hydrogen abstraction by thermally produced small amounts of benzaldehyde; a fact which may explain the variation in quantum yield of amide formation with extent of irradiation. An additional route from oxazirane to amide may also be available.The activation of the oxime by high energy sensitizers under the most favorable conditions gives Φamide = 0.002, and so a singlet pathway for oxazirane formation is preferred. The main route for energy degradation appears to be by syn–anti isomerism. This can be induced by a variety of sensitizers and so can be a triplet process. The direct irradiation of benzaldoxime leads to isomerism with Φαβ = 0.40 and Φβα = 0.38. From these figures, together with the composition of the stationary state found, the composition of the sensitized stationary state can be calculated in fair agreement with the experimentally found value. This suggests that the isomerization following direct irradiation is also a triplet process.In a single example of an aralkyl ketoxime (p-anisylmethyl ketoxime) irradiation products of both aryl and alkyl migration, were found.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3