Development of an advanced one-dimensional stem heating model for application in surface fires

Author:

Jones Joshua L,Webb Brent W,Jimenez Dan,Reardon James,Butler Bret

Abstract

A new one-dimensional heat conduction model for predicting stem heating during fires is presented. The model makes use of moisture- and temperature-dependent thermal properties for layers of bark and wood. The thermal aspects of the processes of bark swelling, desiccation, and devolatilization are treated in an approximate fashion. An energy balance reveals that simulation with a heat flux input boundary condition requires that these phenomena be accounted for. Previous models have used temperature–time boundary conditions, which prevents them from being used in conjunction with fire behavior models. This model uses a flux–time profile for its boundary condition, making it possible to eventually couple it to fire behavior models. The model was developed and validated with laboratory experiments on Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) samples. It is intended that this model be used in conjunction with fire behavior and cell mortality models to make predictions of stem heating related mortality before prescribed burns.

Publisher

Canadian Science Publishing

Subject

Ecology,Forestry,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3