Adjustable column length using a water stationary phase in supercritical fluid chromatography

Author:

Saowapon Matthew T.11,Thurbide Kevin B.11

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

A novel method for adjusting the column length during analysis in capillary supercritical fluid chromatography (SFC) is introduced. The approach is based on using a water stationary phase that can be partially ejected (or replenished) from the column as desired, without physically removing the supporting hardware elements. By flowing cool air through a sleeve surrounding the column in a heated oven, an axial thermal gradient along the length of the column was formed. This established a cooler region where the water stationary phase could be maintained and a hotter region where the coating was removed through dehydration. As such, the effective column length could be easily adjusted by changing the gradient via the air flow rate. Using this prototype arrangement, column lengths could be readily varied between 1.4 and 10 m. System response was also fairly rapid and changes took effect in under 1 min. Once a given length was established, retention times were highly reproducible with a relative standard deviation of 1.8% (n = 3). The method is cheaper and faster than the conventional method of storing numerous columns for manual switching. Further, it avoids the convolution of system pressure and flow rate that accompanies the pressure adjustments normally used to optimize capillary SFC separations. Results indicate that this approach could be a useful alternative for adjusting column length to optimize separation speed and resolution.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Reference33 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3