Affiliation:
1. Department of Chemistry, University of Western Ontario, London, ON N6A 5B7, Canada.
Abstract
The isomerization and reductive elimination reactions from octahedral organometallic complexes of palladium(IV) and platinum(IV) usually occur through five-coordinate intermediates that cannot be directly detected. This paper reports a computational study of five-coordinate complexes of formulae [PtMe3(bipy)]+, [PtMe2Ph(bipy)]+, and [PtMe(CH2CMe2C6H4)(bipy)]+ (M = Pd or Pt, bipy = 2,2′-bipyridine), particularly with respect to reactivity and selectivity in reductive elimination. All of the complexes are predicted to have square pyramidal structures with the bipy and two R groups in the equatorial positions and one R group in the axial position, and axial–equatorial exchange occurs by a pairwise mechanism, with the transition state having a pinched trigonal bipyramidal (PTBP) stereochemistry, with one nitrogen and two R groups in the trigonal plane. The activation energy for isomerization is lower than that for reductive elimination in all cases. For the complexes [MMe2Ph(bipy)]+, the activation energies for reductive elimination with Me–Me or Me–Ph coupling are similar. For the complexes [MMe(CH2CMe2C6H4)(bipy)]+, the reductive elimination with Me–C6H4 bond formation from the isomer with the methyl group in the axial position is predicted and is attributed to it having the best conformation of the Me and C6H4 groups for C–C bond formation. In all cases, the selectivity for reductive elimination is similar for M = Pd or Pt, but reactivity is higher for M = Pd. The relevance of this work to selectivity in catalysis is discussed.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献