Combining two user-friendly machine learning tools increases species detection from acoustic recordings

Author:

Pérez-Granados Cristian12ORCID,Feldman Mariano J.23ORCID,Mazerolle Marc J.4ORCID

Affiliation:

1. Ecology Department, Alicante University, Alicante, Spain

2. Conservation Biology Group. Landscape Dynamics and Biodiversity programme. Forest Science and Technology Center of Catalonia (CTFC), Solsona, Catalonia, Spain

3. Institut de Recherche sur les Forêts (IRF), Chaire industrielle CRSNG-UQAT sur la biodiversité en contexte minier, Centre d’étude de la forêt, Université du Québec en Abitibi Témiscamingue (UQAT), Rouyn-Noranda, Québec, Canada

4. Centre d’étude de la forêt, Département des sciences du bois et de la forêt, Université Laval, Québec, Canada

Abstract

Passive acoustic monitoring usually generates large datasets that require machine learning algorithms to scan sound files, although the complexity of developing machine learning algorithms can be a barrier. We assessed the ability and speed of two user-friendly machine learning tools, Kaleidoscope Pro and BirdNET, for detecting the American toad ( Anaxyrus americanus (Holbrook, 1836)) in sound recordings. We developed a two-step approach, combining both tools to maximize species detection while minimizing the time needed for output verification. When considered separately, Kaleidoscope Pro successfully detected the American toad in 85.9% of recordings in the validation dataset, while BirdNET detected the species in 58.4% of recordings. Combining the two tools in the two-step approach increased the detection rate to 93.3%. We applied the two-step approach to a large acoustic dataset ( n = 6194 recordings). We started by scanning the dataset using Kaleidoscope Pro (species detected in 417 recordings), then we used BirdNET on the remaining recordings without confirmed presence. The two-step approach reduced the scanning time, the time needed for output verification, and added 37 additional species detections in 45 min. Our findings highlight that combining machine learning tools can improve species detectability while minimizing time and effort.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3