Thermal expansion and pore pressure generation in oil sands

Author:

Agar J. G.,Morgenstern N. R.,Scott J. D.

Abstract

The prediction of stress changes and deformations arising from ground heating requires the coupled solution of the heat transfer and consolidation equations. Heat consolidation as a class of problems is distinct from other thermally induced consolidation problems involving processes such as frost heave and thaw consolidation in that it involves heating to elevated temperatures well above normal ground temperatures. Two of the important parameters required in analyses of heat consolidation problems are thermal expansion coefficients and a coefficient of thermal pore pressure generation.Relationships describing thermal expansion behaviour and thermal pore pressure generation in oil sands are presented. Both drained and undrained thermal expansion coefficients for Athabasca oil sand were determined by means of heating experiments in the temperature range 20–300 °C. The thermal pore pressure generation coefficient was evaluated in undrained heating experiments under constant total confining stresses and under constant effective confining stresses. The equipment and experimental methods developed during this study are appropriate for determination of thermal expansion and pore pressure generation properties of oil sands and other unconsolidated geologic materials. Key words: thermal expansion, oil sand, tar sand, thermal pore pressure generation, heat consolidation, thermal consolidation, coefficient of thermal expansion, thermal stresses, ground heating, thermally enhanced oil recovery, thermoelasticity, undrained heating.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Cited by 55 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3