Abstract
Phase equilibria were determined in the P–T range of 0.5–10 Kb and 150–900 °C in the system NaAlSi3O8 – NaAlSiO4 – H2O. Two isobaric (2 Kb and 5.15 Kb) T–X phase diagrams (projected to a dry base) were completely determined and show that the stability field of analcite solid solutions has a large distorted pentagonal shape. The phase relations for the transition: nepheline hydrate I [Formula: see text] nepheline + H2O on the composition join NaAlSiO4 – H2O are not binary. It was found that there exists a narrow zone for the transition. The true P–T curve was found and determined in terms of a ternary univariant reaction: nepheline hydrate I + analcite [Formula: see text] nepheline + H2O. In the system NaAlSi3O8 – SiO2 – H2O, albite contains about 5 wt % silica in solid solution at 5.15 Kb and 670 °C.The equilibrium compositions of various univariant phases were determined essentially on the basis of the T–X phase diagrams. Another univariant reaction (zeolite species P = analcite + nepheline – hydrate I + H2O) was found at 2 Kb/215 °C and 5.15 Kb/235 °C and determined on a P–T projection. Three singular points were determined; two of them are located at 0.8 Kb/390 °C and 9.4 Kb/475 °C respectively on a univariant P–T curve for the reaction nepheline hydrate I + analcite = nepheline + H2O; the other one is located at 6 Kb/655 °C on a univariant P–T curve along which nepheline, analcite, liquid, and vapor coexist. The petrogenetic implication of analcite is discussed fully.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献