Optimizing the parameters for force, temperature, and metal removal rate: a multi-feature fusion model for titanium alloy milling

Author:

Li Songyuan1,Li Shuncai12,Li Yuqing2,Popov Eugene3

Affiliation:

1. School of Mechanical and Electrical Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.

2. JSNU-SPBPU Institute of Engineering, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China.

3. Higher School of Applied Physics and Space Technologies, Petersburg Polytechnic University, Saint Petersburg 1952151, Russia.

Abstract

In the processing of titanium alloy, the milling parameters determine the process temperature and force. Increasing the milling temperature and force can affect the quality of the titanium alloy produced. In this study, we developed a multi-feature fusion model for high-quality titanium alloy workpieces. In the milling experiments with different milling parameters, an infrared thermal imager and a three-dimensional dynamometer were used to collect the time-domain signals for temperature near the tip of the milling cutter and the milling force. Based on the experimental data, a multi-feature fusion model was established with the milling temperature, milling force, and metal removal rate as the targeted variables, and the milling parameters as the optimized parameters. Based on the particle swarm optimization algorithm, the optimal milling parameters within the test parameters were resolved using the multi-feature fusion model. The results show that: within the milling parameter range of the experimental design, the optimal solutions for the milling parameters are: milling speed of 22.14 m/min; feed speed of 8.25 mm/min; milling depth of 1.36 mm. The multi-feature fusion model resulted in lower milling temperature and force, and provides theoretical guidance for scientifically designing the parameters for the milling process.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3