The adaptive sliding mode control based on U–K theory for foot trajectory following of hexapod robot

Author:

Wei Junying1,Li Xiang1ORCID,Liu Yu1,Zhang Haowei1,Yang Lei1,Li Xueyi1

Affiliation:

1. College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590, China

Abstract

This paper addresses the control of a hexapod robot’s foot trajectory tracking using an adaptive sliding mode control (SMC) approach based on Udwadia–Kalaba theory. Unlike the traditional control approach, the Udwadia–Kalaba theory allows for the transformation of the hexapod robot foot trajectory tracking control problem into a system servo binding solution problem. This method eliminates the requirement to linearize the nonlinear system. The system may contain uncertainties, such as less-than-ideal initial circumstances and vibration disturbances during operation, which have an impact on the control precision due to mistakes in modeling, measurements, and changes in operational states. To deal with the uncertainty, the adaptive SMC controller was developed. The stability analysis is carried out using the second Lyapunov function method. By modeling the hexapod robot’s legs and running simulations to compare the simulated tracking route to the planned trajectory, the precision and stability of the control approach suggested in this study are finally demonstrated, and by comparing with the simulation results of adaptive robust control strategy, the advantages of RBF neural network adaptive SMC strategy are obtained.

Publisher

Canadian Science Publishing

Reference30 articles.

1. Adaptive Neural Trajectory Tracking Control for n-DOF Robotic Manipulators with State Constraints

2. Li Y., Shi M.X. 2022. Variable structure sliding mode control method for satellite attitude. Journal of Xi'an Jiaotong University, 56: 56–66.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3