Analysis of a diesel engine fueled with ternary fuel blends and alumina nano-additives at various combustion chamber geometries

Author:

Jayaseelan George Antony Casmir1,Dhas Anderson Arul Gnana1,Venu Harish2,Jayaraman Jayaprabakar1,Appavu Prabhu3

Affiliation:

1. School of Mechanical Engineering, Sathyabama Institute of Science and Technology, Chennai 600119, India.

2. Department of Automobile Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Chennai 600062, India.

3. Department of Mechanical Engineering, College of Engineering Guindy, Anna University, Chennai 600025, India.

Abstract

The present study investigates the impact of various combustion chamber geometries in a direct injection engine fueled with diesel–biodiesel–ethanol blends mixed with alumina nano-additives, named as high-performance fuel (HPF). The HPF was subjected to various combustion bowl geometries including standard hemispherical chamber geometry (SG), shallow depth reentrant bowl geometry (CG1), toroidal reentrant chamber geometry (CG2), and toroidal chamber geometry (CG3). Performance results reveal that in comparison with the SG-HPF arrangement, brake thermal efficiency increased by 11.51% and brake-specific energy consumption decreased by 10.37% when using the CG2-HPF arrangement. For emmisions, CG2-HPF reduced carbon monoxide, hydrocarbon, and smoke emissions by 33.53%, 18.35%, and 14.37%, respectively, in comparison with SG-HPF. Regarding combustion, CG2-HPF resulted in a high heat release rate owing to the reentrant chamber profile of CG2 which improves the air–fuel mixture rate, atomization, and evaporation rate, resulting in more efficient combustion, increased cylinder pressure, and increased heat release rate. Thanks to the geometry of the reentrant profile, the turbulent kinetic energy of the fuel mixture is maintained and returned to the combustion zone. Thus, the stagnation of rich mixtures within the combustion zone tend to decrease. Overall, the CG2 geometry was found to be the optimum geometry profile for HPF, based on improved performance and combustion characteristics, as well as reduced exhaust emissions.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3