An ease-off tooth surface redesign for spiral bevel gears considering misalignment under actual working conditions

Author:

Mu Yanming123ORCID,Xie Fangxia1,He Xueming1

Affiliation:

1. School of Mechanical Engineering, Jiangnan University, Wuxi, China

2. Jiangsu Pacific Precision Forging Co., Ltd, Taizhou, China

3. Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Wuxi, China

Abstract

To improve the loaded performance of spiral bevel gears, a novel tooth surface redesign method considering misalignment is proposed based on ease-off. First, the digital features of the contact pattern were extracted, and the equivalent misalignment was obtained by an optimal method according to the minimum deviation of the contact path. Second, a pinion target surface whose performance under misalignment was consistent with the original gear in standard position was built, and a pinion surface with good meshing performance under misalignment was redesigned with equivalent misalignment. Third, the flank modification was carried out to cut down on the loaded transmission error of gear under misalignment. Through simulations, it is found the transmission error and the contact path of redesign gear considering misalignment were the same as original gear in standard position. The loaded transmission error amplitude of original gear under misalignment was 43.91% higher than original gear in standard position, and the loaded transmission error amplitude of redesign gear after optimization under misalignment was 44.73% lower than original gear in standard position and 61.60% lower than original gear under misalignment. The tooth surface stress of redesigned gear after optimization under misalignment was also significantly improved. This proposed redesign method, which considers misalignment on the basis of ease-off, can greatly improve the loaded meshing quality of gear under actual working conditions.

Funder

National Science Foundation of China

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3