Affiliation:
1. National Research Center of Pumps, Jiangsu University, Zhenjiang 212013, China
2. College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract
The reliability and control precision of the engagement and disengagement of wet friction clutch are crucial to the transmission of high-speed helicopters. In contrast to the traditional proportional hydraulic system, the digital hydraulic system provides a viable solution due to the use of several fast switching valves (FSVs). In this research, a digital hydraulic pressure tracking system using two fast switching valve arrays (DHPTS-FSVA) is proposed and its nonlinear model is established. First, the static and dynamic characteristics of the DHPTS-FSVA are deeply analyzed by virtue of the half-bridge resistance theory. Moreover, a novel pressure control strategy is proposed, which consists of nonlinear adaptive control method, differential pulse width modulation (PWM) with pressure compensation, and logic allocation strategy of PWM duty ratio. Finally, comparative simulation and experimental results indicate that the maximum, average, and standard deviation of the errors are reduced by at least 16.1%, 45.1%, and 39.5%, respectively, at the tracking frequencies of 1 and 2 Hz, which proves that the proposed controller exhibits better tracking performance at low frequencies.
Funder
Natural Science Foundation of the Jiangsu Higher Education Institutions of China
National Natural Science Foundation of China
Key Laboratory of Fluid and Power Machinery (Xihua University), Ministry of Education
Science and Technology Project of Taizhou City of China
Publisher
Canadian Science Publishing
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献