The effect of piercing and drilling processes on burr formation and delamination of aged carbon and aramid fiber-reinforced polymer composites

Author:

Engin Kaan Emre1ORCID,Kaya Ali Ihsan1ORCID,Tandogan Mahmut1ORCID

Affiliation:

1. Faculty of Engineering, Mechanical Engineering Department, Adiyaman University, Adiyaman, Turkey

Abstract

There are two major problems with fiber-reinforced polymer (FRP) composites during their machining that need to be addressed. The first concern is the delamination and formation of burrs at machined edges, and the second is the effects of aging leading to mechanical deterioration. In this study, carbon FRP (CFRP) and aramid FRP (AFRP) composites were manufactured by vacuum infusion method and aged for 2 years under natural environmental conditions. Piercing with three different clearances (1%, 5%, and 10% of sheet thickness) and speed of 4 m/s were performed. Additionally, conventional drilling was carried out at a feed rate of 0.2 m/min. The highest delamination factor difference between piercing and drilling processes was calculated as 7.3% and 13.9% for CFRP and AFRP, respectively. The highest burr amounts for AFRP and CFRP composites were obtained as 91.5% and 39% at 10% clearance for piercing process and 123% and 32.1% for drilling process, respectively. Compared with drilling, piercing generates less burr formation except for CFRP composites in the case of 10% clearance and more precise hole production. It is understood that piercing results significantly improve when smaller clearances up to 5% of the sheet thickness are utilized.

Publisher

Canadian Science Publishing

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparison of drilling and milling hole-forming mechanism of AFRP and experimental study of MQL;The International Journal of Advanced Manufacturing Technology;2024-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3