Whole-body urea cycling and protein turnover during hyperphagia and dormancy in growing bears (Ursus americanusandU.arctos)

Author:

Barboza Perry S.,Farley Sean D.,Robbins Charles T.

Abstract

Subadult bears were studied during their autumn hyperphagia (n = 3) and winter dormancy (n = 6). Urea kinetics were measured with14C- and15N-urea, protein turnover was estimated with15N-glycine, and body composition was assessed with3H-water. Reduced amino acid degradation in winter was indicated by declines in plasma urea and aminotransferase activities, and lower urea production than in autumn (4.7 vs. 27.5 mmol urea-N∙kg−0.75∙d−1). Only 7.5% of urea produced in hyperphagic bears was degraded and just 1.1% of the degraded N reutilized as amino-N. Dormant bears reutilized 99.7% of urea produced, indicating thorough microbial ureolysis and urea-N resorption. Low rates of body N loss during dormancy suggested losses of non-urea N as creatinine. Protein turnover rates (15.2–21.5 g∙kg−0.75∙d−1) were similar between seasons and reflected the apparent maintenance of hepatic, intestinal, and muscular functions through dormancy. Protein synthesis accounted for 32% of energy expended in dormancy, which was mainly (91.5%) derived from fat oxidation. Consistent organ function and body temperature in dormant bears enables recycling of urea-N, which minimizes body protein loss and conserves mobility. In comparison with heterothermic hibernation, ursid dormancy would provide greater flexibility during winter and facilitate rapid resumption of foraging and growth in spring.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3