Mechanisms of pipe embedment and lateral breakout on soft clay

Author:

Dingle H. R.C.1,White D. J.1,Gaudin C.1

Affiliation:

1. Centre for Offshore Foundation Systems, University of Western Australia, 35 Stirling Highway, Crawley, Perth WA 6009, Australia.

Abstract

Pipelines laid on the seabed expand and contract during operating cycles as a result of thermal loading, which can lead to lateral buckling. Analysis of this behaviour requires assessment of the vertical penetration and lateral breakout responses. This paper reports centrifuge modelling of these processes, using advanced image analysis techniques to observe the soil deformation. Simple mechanisms are fitted to the observed deformation patterns, allowing the mobilized soil strength to be back-calculated. The vertical embedment mechanisms closely match plasticity solutions. Even if heave is accounted for, the penetration resistance is slightly higher than calculations based on the undrained strength inferred from a T-bar penetrometer. This discrepancy can be attributed to the additional remoulding and softening during steady flow around a T-bar compared to shallow pipe penetration. The lateral breakout response is brittle, and the peak resistance is governed by the available tensile resistance behind the pipe. During steady lateral sweeping the pipe rises close to the original soil surface. At this stage the resistance is governed by the growth of a soil berm ahead of the pipe. Accurate assessment of the near-surface soil strength is difficult, hampering the use of theoretical solutions.

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3