Dicoumarol-induced 9-γ-carboxyglutamic acid prothrombin: isolation and comparison with the 6-, 7-, 8-, and l0-γ-carboxyglutamic acid isomers

Author:

Malhotra Om P.

Abstract

The role of γ-carboxyglutamic acid (Gla) in prothrombin function can be effectively evaluated by characterizing dicoumarol-induced, Gla-deficient prothrombin structural isomers. In addition to the isolation of 8-, 7-, 6-, 5-, 3-, 2-, 1-, and 0-Gla isomers, we have now purified a variant prothrombin containing 9(8.80) Gla residues by barium citrate adsorption, elution, and finally by DEAE-cellulose and immunoaffinity chromatographies. Agar gel electrophoretic mobilities of the 9-Gla isomer and its fragment 1 were slower than those of the respective 10-Gla (normal) prothrombin and fragment 1, both in the absence and presence of Ca(II). In the presence of Ca(II), both 9- and 10-Gla fragments 1 moved slower than 8- and 7-Gla fragments 1. However, in the absence of metal ions, 9- and 7-Gla fragments 1 migrated at the same rate, but slower than 10- and 8-Gla fragments. Similarly, the 9-Gla fragment 1 electro focused cathodically to 10- and 8-Gla, but comparably with 7-Gla fragment 1. The 9-Gla fragment 1 exhibited a Ca(II)-induced 44% decrease in the intrinsic fluorescence, compared with a 40% decrease in that of 10-Gla; 8-Gla fragment 1 revealed only 23% quenching. Ca(II)-dependent anti-normal prothrombin antibodies are not specific for 10-Gla prothrombin, since only a twofold molar excess of the 9-Gla isomer was required to displace equal amounts of labeled normal prothrombin. The most critical Gla residue for influencing the functional, thrombin-generating properties of prothrombin appears to be the one present in the 9-Gla isomer but absent in the 8-Gla variant, since 9-Gla prothrombin possesses four times the normal coagulant activity (78 versus 20%) of the 8-Gla isomer.Key words: prothrombin, blood clotting, dicoumarol, Warfarin, γ-carboxyglutamic acid, vitamin K deficiency.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3