Impact of method parameters on the performance of suspect screening for the identification of trace organic contaminants in surface waters

Author:

Segura Pedro A.11,Racine Mathieu11,Gravel Alexia11,Eysseric Emmanuel11,Grégoire Anne-Marie11,Rawach Diane11,Teysseire François-Xavier11

Affiliation:

1. Department of Chemistry, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada.

Abstract

The performance of a suspect screening method to detect diverse small-molecule trace organic contaminants (TOCs) was systematically evaluated using a set of 39 model compounds. Experiments showed that ionization efficiency, ion transfer parameters, and chromatography could affect the detection of TOCs. As expected, compounds with low ionization yields and poorly retained compounds in chromatographic columns are more difficult to identify in the samples at environmental concentrations. Similarly, TOCs with large deviations from the average mass of the compounds screened were not transmitted efficiently in the mass spectrometer thus negatively affecting their detection. The suspect screening method was validated in terms of recovery and limits of identification of the model compounds using three different types of solid-phase extraction cartridges (reversed phase with polar groups, mixed-mode anion exchange, and mixed mode cation exchange). Experiments showed that more than two-thirds of the model compounds had recoveries >75% with each of the three cartridges, and comparison of limits of identification showed that more than one-half of the model compounds could be identified at concentrations between 6 and 100 ng L−1. However, it was observed that the amount of co-extracted compounds was higher in mixed-mode ion exchangers compared with the reversed-phase cartridge. Application of the suspect screening method using the three different cartridges to surface water samples showed that between 0 to 3% of the positive matches found by the peak identification algorithm were classified as probable structures. Solutions to improve suspect screening of TOCs are proposed and discussed.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3