Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain

Author:

George Akash K.12,Master Kruyanshi3,Majumder Avisek2,Homme Rubens Petit12,Laha Anwesha2,Sandhu Harpal S.45,Tyagi Suresh C.2,Singh Mahavir12

Affiliation:

1. Eye and Vision Science Laboratory, Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.

2. Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA.

3. School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.

4. Department of Ophthalmology and Visual Sciences, University of Louisville School of Medicine, Louisville, KY 40202, USA.

5. Kentucky Lions Eye Center, University of Louisville School of Medicine, Louisville, KY 40202, USA.

Abstract

Circular RNAs (circRNAs) are being hailed as a newly rediscovered class of covalently closed transcripts that are produced via alternative, noncanonical pre-mRNA back-splicing events. These single-stranded RNA molecules have been identified in organisms ranging from the worm (Cortés-López et al. 2018. BMC Genomics, 19: 8; Ivanov et al. 2015. Cell Rep. 10: 170–177) to higher eukaryotes (Yang et al. 2017. Cell Res. 27: 626–641) to plants (Li et al. 2017. Biochem. Biophys. Res. Commun. 488: 382–386). At present, research on circRNAs is an active area because of their diverse roles in development, health, and diseases. Partly because their circularity makes them resistant to degradation, they hold great promise as unique biomarkers for ocular and central nervous system (CNS) disorders. We believe that further work on their applications could help in developing them as “first-in-class” diagnostics, therapeutics, and prognostic targets for numerous eye conditions. Interestingly, many circRNAs play key roles in transcriptional regulation by acting as miRNAs sponges, meaning that they serve as master regulators of RNA and protein expression. Since the retina is an extension of the brain and is part of the CNS, we highlight the current state of circRNA biogenesis, properties, and function and we review the crucial roles that they play in the eye and the brain. We also discuss their regulatory roles as miRNA sponges, regulation of their parental genes or linear mRNAs, translation into micropeptides or proteins, and responses to cellular stress. We posit that future advances will provide newer insights into the fields of RNA metabolism in general and diseases of the aging eye and brain in particular. Furthermore, in keeping pace with the rapidly evolving discipline of RNA“omics”-centered metabolism and to achieve uniformity among researchers, we recently introduced the term “cromics” (circular ribonucleic acids based omics) (Singh et al. 2018. Exp. Eye Res. 174: 80–92).

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3