Involvement of the Akt-dependent CREB signaling pathway in hydrogen-peroxide-induced early growth response protein-1 expression in rat vascular smooth muscle cells

Author:

Rondeau Vincent1,Jain Ashish1,Truong Vanessa1,Srivastava Ashok K.12

Affiliation:

1. Laboratory of Cellular Signaling, Montreal Diabetes Research Center and Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC H2X 0A9, Canada.

2. Department of Medicine, Faculty of Medicine, University of Montreal, Montreal, QC H3C 3J7, Canada.

Abstract

Increased generation of reactive oxygen species is believed to play a key role in the pathophysiology of cardiovascular diseases. Excessive growth and proliferation of vascular smooth muscle cells (VSMCs) have been suggested to be major contributors to vascular dysfunction. Potential involvement of early growth response protein-1 (Egr-1), a zinc finger transcription factor, in the development of vascular diseases has been suggested. Recent studies have shown that the reactive oxygen species hydrogen peroxide (H2O2) increases Egr-1 expression in VSMCs; however, signaling events leading to H2O2-induced Egr-1 expression are not fully understood. Therefore, we aimed to determine the signaling pathways implicated in H2O2-induced Egr-1 expression in rat VSMCs. Pharmacological blockade of the phosphatidylinositol 3-kinase/Akt pathway by wortmannin or SC66 significantly inhibited the protein and mRNA levels of Egr-1 induced by H2O2. H2O2-induced Egr-1 expression was associated with increased phosphorylation of cyclic AMP response element-binding (CREB) protein, and pharmacological inhibition or silencing of Akt attenuated both H2O2-induced CREB phosphorylation and Egr-1 expression. Moreover, RNA interference-mediated depletion of CREB almost completely suppressed the stimulatory effect of H2O2 on Egr-1 expression. Pharmacological blockade or silencing of c-Src resulted in significant suppression of H2O2-induced Egr-1 expression as well as Akt and CREB phosphorylation. These data show that H2O2 enhances the expression of Egr-1, which was associated with increased phosphorylation of Akt, and H2O2 triggers its effects on Egr-1 expression through c-Src–mediated Akt and CREB-dependent signaling events in VSMCs.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3