Whole-cell and nuclear NADPH oxidases levels and distribution in human endocardial endothelial, vascular smooth muscle, and vascular endothelial cells

Author:

Ahmarani Lena1,Avedanian Levon1,Al-Khoury Johny1,Perreault Claudine1,Jacques Danielle1,Bkaily Ghassan1

Affiliation:

1. Department of Anatomy and Cell Biology, Faculty of Medicine, Université de Sherbrooke, 3001, 12th avenue Nord, Sherbrooke, QC J1H 5N4, Canada.

Abstract

The results of our study show that whole-cell and nuclear levels of NADPH oxidase-1 (NOX1) are similar in human vascular endothelial cells (hVECs) and smooth muscle cells (hVSMCs), but lower in human endocardial endothelial cells (hEECs). NOX2 levels were higher in hVECs and lower in hVSMCs. NOX3 levels were the same in hVECs and hVSMCs, but lower in hEECs. NOX4 levels were similar in all of the cell types. NOX4 levels were higher in hVECs than in hVSMCs. NOX5 was also present throughout the 3 cell types, including their nuclei, in the following order: hEECs > hVSMCs > hVECs. The level of basal reactive oxygen species (ROS) was highest in hVECs and lowest in hVSMCs. However, the Ca2+ level was highest in hVSMCs and lowest in hVECs. These findings suggest that all types of NOXs exist in hEECs, hVECs, and hVSMCs, although their density and distribution are cell-type dependent. The density of the different NOXs correlated with the ROS level, but not with the Ca2+ level. In conclusion, NOXs, including NOX3, exist in cardiovascular cells and their nuclei. The nucleus is a major source of ROS generation. The nuclear NOXs may contribute to ROS and Ca2+ homeostasis, which may affect cell remodeling, including the formation of nuclear T-tubules in vascular diseases and aging.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Pharmacology,General Medicine,Physiology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3