Hierarchical Bayesian analysis of capture–mark–recapture data

Author:

Rivot E,Prévost E

Abstract

We present a hierarchical Bayesian model (HBM) for capture–mark–recapture (CMR) data analysis. It aims at estimating the probability of capture (θi) and the total population size (Ni) in a series of I years i = 1,...,I. The HBM assumes that the θis and Nis are sampled from a common probability distribution with unknown parameters. It is compared with the model assuming independence between years in the θis and Nis (ABM). We show how a transfer of information between years is organized by the HBM. We compare the merits of HBM vs. ABM to estimate the spawning run and smolt run of an Atlantic salmon (Salmo salar) population of the River Oir (France) over a period of 17 years. In the spawners case, yearly data are poorly informative. Consequently, the HBM greatly improves posterior inferences compared with the ABM in terms of dispersion and robustness to the choice of prior. In the smolts case, the HBM does not significantly improve inferences compared with the ABM because data are more informative. We discuss why hierarchical modeling should be recommended in any ecological study where the data are collected on several sampling units that share some common features.

Publisher

Canadian Science Publishing

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3