Author:
Jurtshuk Peter,May Ann K.,Pope Leodocia M.,Aston Patricia R.
Abstract
A comparative study was undertaken to examine the succinate and terminal oxidase activities of the electron-transport systems of Azotobacter vinelandii and mammalian mitochondria. For succinate oxidation, both systems exhibited similar relative specificities for the electron acceptors phenazine methosulfate, O2, methylene blue, K3Fe(CN)6, nitrotetrazolium blue, 2,6-dichlorophenolindophenol (DCIP), and cytochrome c. They differed in that DCIP and cytochrome c were less active in the Azotobacter electron-transport system (R3 fraction) than in the bovine mitochondrial system. Comparative studies with known inhibitors of mammalian mitochondrial electron-transport demonstrated that the succinoxidase activity of the Azotobacter R3 fraction was, at least, 2000 times less sensitive to antimycin A, 700 times less sensitive to thenoyl-trifluoroacetone, and 30 times less sensitive to 2-n-heptyl-4-hydroxy-quinoline-N-oxide. Both systems were equally sensitive to KCN, p-chloromercuribenzoic acid, and chlorpromazine.The ability of the two systems to use tetramethyl-p-phenylenediamine (TMPD) and its derivatives as electron donors, for terminal oxidation, was also similar. Studies on steady state reduction revealed that in the Azotobacter R3 fraction, the cytochromes (a2, a1, b1, c4 + c5) and flavoprotein components were reduced substantially by succinate as well as by TMPD in the presence of ascorbate. Ultrastructure analyses of the Azotobacter R3 electron-transport fraction revealed the vesicular membranous components identified as oxidosomes according to the terminology used by DeLey and contained spherical headpiece units of 80 Å in diameter which appeared to be morphologically identical with the tripartite units or the elementary particles described by Green and associates, viz., Kopaczyk et al., and by Fernandez-Moran et al.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology
Cited by
31 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献