Initiation and failure mechanism of base instability of excavations in clay triggered by hydraulic uplift

Author:

Hong Y.1,Ng C.W.W.2,Wang L.Z.1

Affiliation:

1. College of Civil Engineering and Architecture, Zhejiang University, Hang Zhou, China.

2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, HKSAR.

Abstract

Excavations in clay overlying an aquifer may cause catastrophic basal failure due to hydraulic uplift. Although case histories with hydraulic uplift failures are reported worldwide from time to time, the initiation and failure mechanism of the base instability are not well studied and understood. To address these two issues, dimensional analysis is firstly conducted to propose dimensionless groups (DGs) possibly relevant to this subject. Effects of these DGs on the initiation and failure mechanism of base instability are then investigated, by carrying out a series of finite element analyses, in which constitutive models and model parameters have been previously validated against centrifuge test results. It is revealed that the initiation and failure mechanism of base instability due to hydraulic uplift is mainly governed by a ratio of excavation width over the thickness of soft clay inside excavation (B/D). As excavation becomes narrower (i.e., B/D decreases), the hydraulic pressure (Pi) required to initiate uplift movement of clay inside excavation increases significantly (maximum percentage increase = 50%), due to increased effect of downward shear stress acting along soil–wall interface on basal resistance. Based on the parametric study, a calculation chart is developed for estimating Pi of excavations with varied B/D and undrained shear strength of clay. At basal failure caused by hydraulic uplift, the dominant failure mode changes from simple shear in relatively narrow excavations (i.e., B/D < 4) to combined modes of triaxial compression, triaxial extension, and simple shear in relatively wide excavations (i.e., B/D > 4).

Publisher

Canadian Science Publishing

Subject

Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology

Reference32 articles.

1. Al-Tabbaa, A. 1987. Permeability and stress-strain response of Speswhite Kaolin. Ph.D. thesis, University of Cambridge, UK.

2. The strength and dilatancy of sands

3. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3