Affiliation:
1. College of Civil Engineering and Architecture, Zhejiang University, Hang Zhou, China.
2. Department of Civil and Environmental Engineering, Hong Kong University of Science and Technology, HKSAR.
Abstract
Excavations in clay overlying an aquifer may cause catastrophic basal failure due to hydraulic uplift. Although case histories with hydraulic uplift failures are reported worldwide from time to time, the initiation and failure mechanism of the base instability are not well studied and understood. To address these two issues, dimensional analysis is firstly conducted to propose dimensionless groups (DGs) possibly relevant to this subject. Effects of these DGs on the initiation and failure mechanism of base instability are then investigated, by carrying out a series of finite element analyses, in which constitutive models and model parameters have been previously validated against centrifuge test results. It is revealed that the initiation and failure mechanism of base instability due to hydraulic uplift is mainly governed by a ratio of excavation width over the thickness of soft clay inside excavation (B/D). As excavation becomes narrower (i.e., B/D decreases), the hydraulic pressure (Pi) required to initiate uplift movement of clay inside excavation increases significantly (maximum percentage increase = 50%), due to increased effect of downward shear stress acting along soil–wall interface on basal resistance. Based on the parametric study, a calculation chart is developed for estimating Pi of excavations with varied B/D and undrained shear strength of clay. At basal failure caused by hydraulic uplift, the dominant failure mode changes from simple shear in relatively narrow excavations (i.e., B/D < 4) to combined modes of triaxial compression, triaxial extension, and simple shear in relatively wide excavations (i.e., B/D > 4).
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Reference32 articles.
1. Al-Tabbaa, A. 1987. Permeability and stress-strain response of Speswhite Kaolin. Ph.D. thesis, University of Cambridge, UK.
2. The strength and dilatancy of sands
3. On Physically Similar Systems; Illustrations of the Use of Dimensional Equations
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献