Nitrogen fertilizer is a key factor affecting the soil chemical and microbial communities in a Mollisol

Author:

Du Yan12,Wang Tianye12,Wang Chengyu12,Anane Paul-Simon12,Liu Shuxia12,Paz-Ferreiro Jorge3

Affiliation:

1. College of Resources and Environmental Science, Jilin Agricultural University, Changchun, Jilin Province 130118, P.R. China.

2. Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun, Jilin Province 130118, P.R. China.

3. School of Engineering, RMIT University, G.P.O. Box 2476, Melbourne 3001, VIC, Australia.

Abstract

Microbial communities drive geochemical cycles in soils. Relatively few studies have assessed the long-term impacts of different types of soil amendments under field conditions in long-term experiments. The response of soil microbial organisms in a Mollisol cultivated with maize for 35 years was examined. Treatments involved the use of N, P, and K fertilizers and two doses of straw residue in isolation or combined. Real-time PCR and Illumina MiSeq sequencing methods were used to characterize the microbial community. The results showed that addition of nitrogen fertilizers decreased soil pH, but this was mitigated when a high dose of straw was also incorporated. Long-term application of inorganic fertilizers was able to alter the abundance of functional soil microbial population. Application of inorganic N fertilizer resulted in distinctive changes on N-cycle microorganisms. Phosphate-solubilizing functional genes abundance was lower in plots with no phosphate fertilizer. Sequencing analysis showed that the presence or absence of N in the fertilizer mix is a key factor affecting bacterial community diversity of agricultural soil, and pH, total organic C, and total N show a high correlation with bacterial community composition. Nitrogen addition increased the N concentration in the soil, which could cause changes in the soil pH and change the soil bacterial community. Our findings proved that interaction of N fertilizer with other fertilizers can affect microbial communities.

Publisher

Canadian Science Publishing

Subject

Genetics,Molecular Biology,Applied Microbiology and Biotechnology,General Medicine,Immunology,Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3