Cellular concentrations of glutamine synthetase in murine organs

Author:

van Straaten Henny W.M,He Youji,van Duist Marjan M,Labruyère Wil T,Vermeulen Jacqueline L.M,van Dijk Paul J,Ruijter Jan M,Lamers Wouter H,Hakvoort Theodorus B.M

Abstract

Glutamine synthetase (GS) is the only enzyme that can synthesize glutamine, but it also functions to detoxify glutamate and ammonia. Organs with high cellular concentrations of GS appear to function primarily to remove glutamate or ammonia, whereas those with a low cellular concentration appear to primarily produce glutamine. To validate this apparent dichotomy and to clarify its regulation, we determined the GS concentrations in 18 organs of the mouse. There was a >100-fold difference in GS mRNA, protein, and enzyme-activity levels among organs, whereas there was only a 20-fold difference in the GS protein:mRNA ratio, suggesting extensive transcriptional and posttranscriptional regulation. In contrast, only small differences in the GS enzyme activity : protein ratio were found, indicating that posttrans lational regulation is of minor importance. The cellular concentration of GS was determined by relating the relative differences in cellular GS concentration, detected using image analysis of immunohistochemically stained tissue sections, to the biochemical data. There was a >1000-fold difference in cellular concentrations of GS between GS-positive cells in different organs, and cellular concentrations were up to 20× higher in subpopulations of cells within organs than in whole organs. GS activity was highest in pericentral hepatocytes (~485 µmol·g–1·min–1), followed in descending order by epithelial cells in the epididymal head, Leydig cells in the testicular interstitium, epithelial cells of the uterine tube, acid-producing parietal cells in the stomach, epithelial cells of the S3 segment of the proximal convoluted tubule of the kidney, astrocytes of the central nervous tissue, and adipose tissue. GS activity in muscle amounted to only 0.4 µmol·g–1·min–1. Our findings confirmed the postulated dichotomy between cellular concentration and GS function.Key words: mRNA, protein, enzyme activity, posttranscriptional regulation, quantitative immunohistochemistry.

Publisher

Canadian Science Publishing

Subject

Cell Biology,Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3