Metabolism, nitrogen excretion, and heat shock proteins in the central mudminnow (Umbra limi), a facultative air-breathing fish living in a variable environment

Author:

Currie S.1234,Bagatto B.1234,DeMille M.1234,Learner A.1234,LeBlanc D.1234,Marks C.1234,Ong K.1234,Parker J.1234,Templeman N.1234,Tufts B. L.1234,Wright P. A.1234

Affiliation:

1. Department of Biology, Mount Allison University, Sackville, NB E4L 1G7, Canada

2. Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.

3. Department of Biology, University of Akron, Akron, OH 44325, USA.

4. Department of Biology, Queen’s University, Kingston, ON K7L 3N6, Canada.

Abstract

The central mudminnow ( Umbra limi (Kirtland, 1841)) is a continuous, facultative air-breathing freshwater fish found in swamps of central Canada and northeastern USA. The first goal of this field and laboratory-based study was to characterize the physicochemical conditions of mudminnow habitat during the summer. Our second goal was to determine the metabolic, stress response, and nitrogen excretion strategies of this fish following variations in water temperature, dissolved oxygen, external ammonia, and short-term periods of air exposure. We report profound diurnal fluctuations in water temperature (13–31 °C), dissolved oxygen (2%–159% air saturation), and ammonia levels (10–240 μmol·L−1) in habitat of central mudminnow measured on three dates at six different sites over 24 h. The central mudminnow does not induce urea synthesis as a mechanism of ammonia detoxification, either in response to emersion (6 or 20 h) or elevated external ammonia (10 mmol·L–1). Acute exposure to high temperature (~31 °C), aquatic hypoxia, or air resulted in significant increases in blood glucose and liver heat shock protein (Hsp) 70 and hypoxia also caused an increased reliance on anaerobic metabolism. This is the first description of the heat shock response in a facultative air-breathing fish following either hypoxia or air exposure. These metabolic and molecular responses are part of a strategy that allows the mudminnow to thrive in extremely variable freshwater environments.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3