Fabrication of a polymer nozzle array in a microstructured fibre as a nanoelectrospray emitter for mass spectrometry

Author:

Fu Yueqiao11,Gibson Graham T.T.11,McGregor Christine11,Oleschuk Richard D.11

Affiliation:

1. Department of Chemistry, Queen’s University, Kingston, ON K7L 3N6, Canada.

Abstract

We report a modified silica microstructured fibre (MSF) as a multiple electrospray (MES) emitter, with dimensional compatibility with conventional liquid chromatography and mass spectrometry equipment, to generate stable electrospray from a wide range of applied potentials and flow rates. An array of polymer nozzles is fabricated in the MSF by a procedure involving templated polymerization of microtubes and wet chemical etching of the silica at the tip. The structure of the emitting end of the MSF was optimized with respect to the etching process, and the morphology of the polymer nozzles was optimized with respect to polymerization conditions. The mechanisms of the etching and of the templated polymerization of the microtubes were explored. Optimization experiments were performed using commercially available MSF having 126 tubular air channels arranged in a hexagonal pattern with channel diameter of ∼5.6 μm. However, the flexibility and versatility in the pattern, shape, and size of channels in MSFs allowed a custom-designed MSF to be fabricated and tested for MES. In the new design, six channels were evenly spaced in a radial pattern, and when polymer nozzles were made, six stable electrosprays were observed over a wide range of electrospray conditions. Using these MES emitters, the spray current is enhanced by a factor related to the number of nozzles.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3