High open circuit voltage organic solar cells based upon fullerene free bulk heterojunction active layers

Author:

Eftaiha Ala’a F.12,Sun Jon-Paul2,Hendsbee Arthur D.1,Macaulay Casper1,Hill Ian G.2,Welch Gregory C.1

Affiliation:

1. Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, NS B3H 4R2, Canada.

2. Department of Physics, Dalhousie University, 1459 Oxford Street, Halifax, NS B3H 4R2, Canada.

Abstract

We have recently reported on a small organic molecule containing a bithiophene core with end-capping phthalimide units (PthTh2Pth) that exhibited a H-aggregation tendency in the solid state and high electron mobility in organic field effect transistors. In this contribution, we have studied both the physical and electrical properties of poly(3-hexylthiophene) (P3HT) and PthTh2Pth thin films by measuring the optical absorption, Frontier molecular orbital energy levels, photoluminescence quenching, thermal properties, and photovoltaic response. Our results have provided a useful insight into the use of PthTh2Pth as an electron acceptor material for organic photovoltaic applications. In comparison with high-performance, fullerene-based, solution-processed bulk heterojunction solar cells reported in the literature, a relatively high open circuit voltage (∼0.94 V) was obtained for various donor–acceptor blend ratios. These results highlight the potential for PthTh2Pth to act as an alternative to fullerenes as acceptors in organic solar cell devices.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3