Kinetics and mechanism of gas-phase reaction of CF3OCH2CH3 (HFE-263) with the OH radical — a theoretical study

Author:

Rao Pradeep Kumar1,Singh Hari Ji1

Affiliation:

1. Department of Chemistry, DDU Gorakhpur University, Gorakhpur, India.

Abstract

In the present study, the density functional method with recently developed M06 functionals has been used to study the reaction of CF3OCH2CH3 with the OH radical. All possible hydrogen abstraction and displacement reaction channels have been modeled. The minimum energy path on the respective potential energy surface and energetics were calculated at the M06-2X/6-311++G(d,p) level of theory. Two different reaction mechanisms were considered: (i) reactant and product complexes called the complex mechanism and (ii) the direct mechanism (reactant → transition state → product). Tunneling corrections were made using the Eckart unsymmetrical potential. The overall rate constant calculated by the complex mechanism (keff = 1.8 × 10−13 cm3 molecule−1 s−1) has been found to be in good agreement with the experimentally determined value (1.5 ± 0.25 × 10−13 cm3 molecule−1 s−1), while the rate constant calculated by the direct mechanism (kD = 7.6 × 10−14 cm3 molecule−1 s−1) is about two times lower than the experimental value. The theoretical studies show that hydrogen atom abstraction from the –CH2– site is the most favorable reaction pathway and the reaction involves prereactive and product complexes before leading to stable product formation.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3