Flight muscle carnitine palmitoyl transferase activity varies with substrate chain length and unsaturation in the hoary bat (Lasiurus cinereus)

Author:

Price E.R.1,McGuire L.P.1,Fenton M.B.1,Guglielmo C.G.1

Affiliation:

1. Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada.

Abstract

Fat is an important fuel for bats to support high metabolic rates in extended periods of flight. The fatty acid composition of adipose stores could affect whole animal exercise performance, as fatty acids vary in rates of mobilization and oxidation. A key step in the fatty acid oxidation pathway is transporting fatty acids from the cytosol into mitochondria, mediated by the enzyme carnitine palmitoyl transferase (CPT). Therefore, understanding the substrate preference patterns of CPT in bats is important for interpreting the consequences of adipose fatty acid profiles. We measured CPT activity with eight different fatty acyl CoA substrates (16:0, 16:1ω7, 18:0, 18:1ω9, 18:2ω6, 18:3ω3, 20:4ω6, and 22:6ω3) in the pectoralis muscle of migrating and nonmigrating hoary bats (Lasiurus cinereus (Beauvois, 1796)). The pattern of substrate preference was similar to the patterns previously reported for birds and rats and was not affected by migration. Generally, activity increased with the number of double bonds and was higher with 16 carbon fatty acids compared with 18 carbon fatty acids. Given the observed substrate variation in CPT activity, there is no evidence to suggest that recently reported seasonal changes in the adipose fatty acid composition of migrating hoary bats would lead to increased lipid oxidation rate, and may instead be a consequence of seasonal shifts in diet.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3