Author:
Mason-Gamer Roberta J,Orme Nancy L,Anderson Claire M
Abstract
Although the monogenomic genera of the Triticeae have been analyzed in numerous biosystematic studies, the allopolyploid genera have not been as extensively studied within a phylogenetic framework. We focus on North American species of Elymus, which, under the current genomic system of classification, are almost all allotetraploid, combining the St genome of Pseudoroegneria with the H genome of Hordeum. We analyze new and previously published chloroplast DNA data from Elymus and from most of the monogenomic genera of the Triticeae in an attempt to identify the maternal genome donor of Elymus. We also present a cpDNA phylogeny for the monogenomic genera that includes more data than, and thus builds on, those previously published. The chloroplast DNA data indicate that Pseudoroegneria is the maternal genome donor to all but one of the Elymus individuals. There is little divergence among the Elymus and Pseudoroegneria chloroplast genomes, and as a group, they show little divergence from the rest of the Triticeae. Within the monogenomic Triticeae, the problematic group Thinopyrum is resolved as monophyletic on the chloroplast DNA tree. At the intergeneric level, the data reveal several deeper-level relationships that were not resolved by previous cpDNA trees.Key words: chloroplast genome, phylogeny, polyploidy, systematics.
Publisher
Canadian Science Publishing
Subject
Genetics,Molecular Biology,General Medicine,Biotechnology
Cited by
128 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献