Author:
Shoemaker L.,Greenway C. V.,Peeling J.,Sutherland G.,Tomlinson G.
Abstract
The effects of increasing blood ethanol levels on hepatic metabolism were studied in anesthetized cats whose prior fluid intake contained ethanol for 24 days. A hepatic venous long-circuit technique with an extracorporeal reservoir was used to allow hemodynamic measurements and repeated sampling of arterial, portal, and hepatic venous blood without depletion of blood volume. For ethanol, Vmax was 106 ± 15 μmol∙min−1∙100∙g−1 liver and Km was 164 ± 31 μM. A previous study showed that there were no changes in O2 uptake by the liver, suggesting other oxidative processes were suppressed during ethanol metabolism. In this study, proton nuclear magnetic resonance spectroscopy was used to simultaneously screen several plasma metabolites to elucidate other metabolic processes that may be perturbed in the liver during ethanol infusion. Hepatic lactate uptake remained unaltered when ethanol metabolism was less than 0.5 Vmax but was suppressed on an equimolar basis with ethanol metabolism when ethanol metabolism rose above 0.5 Vmax. Thus, lactate oxidation is one process that can be suppressed to allow ethanol oxidation without additional O2 uptake by the liver. In addition, no release of acetate from the liver occurred during ethanol metabolism in these experiments. This surprising finding suggests ethanol metabolism may, under some conditions or in some species, result in fatty acid synthesis rather than acetate release. Eight other major metabolites remained unchanged during ethanol infusion.Key words: liver circulation, hepatic ethanol metabolism, hepatic glucose metabolism, acetate metabolism, β-hydroxybutyrate metabolism.
Publisher
Canadian Science Publishing
Subject
Physiology (medical),Pharmacology,General Medicine,Physiology
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献