Author:
Grabowy Julie AD,Mayer Paul M
Abstract
A common rearrangement reaction for gas-phase proton-bound molecular pairs corresponds to an internal SN2 reaction that results in the loss of a small neutral molecule. For pairs (RCN)(ROH)H+, the energies of the two transition states (TSaand TSb) and the intermediate complex (IC) in the isomerization reaction (relative to the proton-bound pair, in kJ mol1) can be estimated using the following relationships: E(TSa) = 87 9(n) 0.33(ΔPA), E(IC) = 83 9(n) 0.33(ΔPA), and E(TSb) = 107 9(n) 0.10(ΔPA), where 87, 83, and 107 kJ mol1are the values for (CH3CN)(CH3OH)H+. Here, n is the number of stablizing alkyl groups on the central SN2 carbon and ΔPA is the difference between the proton affinity of the migrating moiety and that for the base system (in this case, CH3CN). For the analogous pairs (ROH)(R′OH)H+, only the first value in each expression is different (98, 94, and 121 kJ mol1, respectively, calculated for (CH3OH)2H+).Key words: proton-bound molecular pairs, isomerization, internal SN2 reaction, energetics, metastable ions.
Publisher
Canadian Science Publishing
Subject
Organic Chemistry,General Chemistry,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献