Affiliation:
1. Department of Biology, University of Victoria, P.O. Box 3020, Victoria, BC V8W 3N5, Canada.
Abstract
Lateral lines, a major sensory modality in fishes, are diverse among taxa, but their intraspecific variation has received limited attention. We examined numbers of superficial neuromasts on the buttressing lateral plates (LP) of 1910 threespine stickleback (Gasterosteus aculeatus Linnaeus, 1758) from 26 ecologically and morphologically diverse populations on the Haida Gwaii archipelago, western Canada. Extending from previous studies, we predicted that (i) highly stained dystrophic localities would have threespine stickleback with elevated numbers of neuromasts per plate due to a greater reliance on non-visual sensory modalities and (ii) that LP count and neuromast numbers per plate would functionally covary with predatory assemblage. We found that there were no differences in neuromast count across major habitats (marine, lake, stream), but clear-water populations and those with predatory fish had significantly more neuromasts per plate than most populations in highly stained dystrophic lakes, the effects being accentuated on the first buttressing plate (LP4). We also report the first evidence that neuromast counts per plate are sexually dimorphic, with males having a greater density of neuromasts in most populations. Two transplant experiments between ecologically opposite habitats indicate that within 12 generations, neuromast counts per plate can rapidly shift in response to a change in habitat.
Publisher
Canadian Science Publishing
Subject
Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献