The growth and morphology of microgreens is associated with modified ascorbate and anthocyanin profiles in response to the intensity of sole-source light-emitting diodes

Author:

Jones-Baumgardt Chase1,Ying Qinglu1,Zheng Youbin1,Bozzo Gale G.2

Affiliation:

1. School of Environmental Sciences, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

2. Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada.

Abstract

Sole-source light-emitting diodes (LEDs) are alternatives to fluorescent tubes and high intensity discharge lamps that are routinely used for indoor cultivation of horticultural commodities, including microgreens. This study examined the effect of photosynthetic photon flux density (PPFD) from LEDs on phytochemical profiles of organically grown kale, cabbage, arugula, and mustard microgreens, and their association with growth and morphological attributes. LEDs were used to deliver a 15% blue light and 85% red light mixture to microgreens at varying PPFDs between 100 and 600 μmol·m−2·s−1. For all microgreens, increased concentrations of ascorbate (total and reduced) and total anthocyanin were proportional to PPFD. Total phenolic concentrations were elevated in all four microgreens at high PPFDs, whereas chlorophyll concentrations declined in arugula, cabbage, and mustard. A principal component analysis revealed anthocyanins and phenolics were associated with ascorbate levels in all microgreens, but not with chlorophylls or carotenoids. At high PPFDs photosynthetic pigment levels were negatively associated with fresh and dry weight to varying degrees. Anthocyanins, phenolics, and ascorbate were negatively correlated with hypocotyl length and the colour attribute hue angle in all microgreens. These results indicate that microgreen growth and morphology are associated with altered phytochemical profiles during cultivation under sole-source LEDs.

Publisher

Canadian Science Publishing

Subject

Horticulture,Plant Science,Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3