Reliability of electromyographic and force measures during prone isometric back extension in subjects with and without low back pain

Author:

Pitcher Mark J.1,Behm David G.1,MacKinnon Scott N.1

Affiliation:

1. School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada.

Abstract

Maximal voluntary isometric activations (MVIA) are frequently used as inputs for models attempting to predict muscle force and as normalization values in studies assessing muscle function. However, pain may adversely affect maximal muscle activation. The purpose of this study was to assess reliability of MVIA force and electromyographic (EMG) activity during prone isometric back extension in subjects with and without low back pain (LBP). A novel sub-maximal method using the percentages of the estimated mass of the head–arms–trunk (HAT) segment was also investigated. Repeated measures on 20 male volunteers divided into an LBP (n = 10) and a control group (n = 10) were made on 4 occasions. Force and EMG activity were recorded bilaterally from upper lumbar erector spinae (ULES), lower lumbar erector spinae (LLES), and biceps femoris (BF). Subjects exerted a maximal extension effort against a harness assembly that was attached to a force transducer. Submaximal exertions were also performed with an additional resistance of 100%, 110%, 120%, 130%, 140%, 150%, 160%, and 170% of HAT. Mean MVIA forces were significantly (p ≤ 0.05) lower in LBP vs. control. Intraclass correlation coefficients (ICC) for MVIA force, right and left ULES, and LLES EMG indicated high reliability in controls (R > 0.90), but were significantly less in LBP (R = 0.36–0.80). EMG of BF demonstrated excellent reliability across both groups (R > 0.90). The resistance at 100% HAT demonstrated the highest reliability for LBP patients, whereas higher percentages of HAT showed either similar or higher reliability for controls. Force output and back EMG activity are less reliable with LBP individuals and should be taken into consideration when testing.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3