Geochemistry, geochronology, and fluid inclusion study of the Late Cretaceous Newton epithermal gold deposit, British Columbia

Author:

Liu Lijuan1,Richards Jeremy P.1,DuFrane S. Andrew1,Rebagliati Mark2

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada.

2. Hunter Dickinson Inc., Vancouver, BC V6E 4H1, Canada.

Abstract

Newton is an intermediate-sulfidation epithermal gold deposit related to Late Cretaceous continental-arc magmatism in south-central British Columbia. Disseminated gold mineralization occurs in quartz–sericite-altered Late Cretaceous felsic volcanic rocks, and feldspar–quartz–hornblende porphyry and quartz–feldspar porphyry intrusions. The mineralization can be divided into three stages: (1) disseminated pyrite with microscopic gold inclusions, and sparse quartz–pyrite ± molybdenite veins; (2) disseminated marcasite with microscopic gold inclusions and minor base-metal sulfides; and (3) polymetallic veins of pyrite–chalcopyrite–sphalerite–arsenopyrite. Re–Os dating of molybdenite from a stage 1 vein yielded an age of 72.1 ± 0.3 Ma (published by McClenaghan in 2013). The age of the host rocks has been constrained by U–Pb dating of zircon: Late Cretaceous felsic volcanic rocks, 72.1 ± 0.6 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013); feldspar–quartz–hornblende porphyry, 72.1 ± 0.5 Ma; quartz–feldspar porphyry, 70.9 ± 0.5 Ma (Amarc Resources Ltd., unpublished data, reported by McClenaghan in 2013). The mineralized rocks are intruded by a barren diorite, with an age of 69.3 ± 0.4 Ma. Fluid inclusions in quartz–pyrite ± molybdenite ± gold veins yielded an average homogenization temperature of 313 ± 51 °C (number of samples, n = 82) and salinity of 4.8 ± 0.9 wt.% NaCl equiv. (n = 46), suggesting that a relatively hot and saline fluid likely of magmatic origin was responsible for the first stage of mineralization. Some evidence for boiling was also observed in the veins. However, the bulk of the gold mineralization occurs as disseminations in the wall rocks, suggesting that wall-rock reactions were the main control on ore deposition.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Andrew, K.P.E. 1988. Geology and genesis of the Wolf precious metal epithermal prospect and the Capoose base and precious metal porphyry-style prospect, Capoose Lake area, central British Columbia. M.Sc. thesis, University of British Columbia, Vancouver, B.C.

2. Implications of Chemical and Isotopic Composition for Petrogenesis of Chilcotin Group Basalts, British Columbia

3. Regional stratigraphy and age of Chilcotin Group basalts, south-central British Columbia

4. Revised equation and table for determining the freezing point depression of H2O-Nacl solutions

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3