Plate-tectonic evolution of the Earth: bottom-up and top-down mantle circulation

Author:

Ernst W.G.1,Sleep Norman H.1,Tsujimori Tatsuki2

Affiliation:

1. School of Earth Sciences, Stanford University, Stanford, CA 94305-2115, USA.

2. Center for Northeast Asian Studies, Tohoku University, Sendai, Miyagi 980-8576, Japan.

Abstract

Intense devolatilization and chemical-density differentiation attended accretion of planetesimals on the primordial Earth. These processes gradually abated after cooling and solidification of an early magma ocean. By 4.3 or 4.2 Ga, water oceans were present, so surface temperatures had fallen far below low-pressure solidi of dry peridotite, basalt, and granite, ∼1300, ∼1120, and ∼950 °C, respectively. At less than half their T solidi, rocky materials existed as thin lithospheric slabs in the near-surface Hadean Earth. Stagnant-lid convection may have occurred initially but was at least episodically overwhelmed by subduction because effective, massive heat transfer necessitated vigorous mantle overturn in the early, hot planet. Bottom-up mantle convection, including voluminous plume ascent, efficiently rid the Earth of deep-seated heat. It declined over time as cooling and top-down lithospheric sinking increased. Thickening and both lateral extensional + contractional deformation typified the post-Hadean lithosphere. Stages of geologic evolution included (i) 4.5–4.4 Ga, magma ocean overturn involved ephemeral, surficial rocky platelets; (ii) 4.4–2.7 Ga, formation of oceanic and small continental plates were obliterated by return mantle flow prior to ∼4.0 Ga; continental material gradually accumulated as largely sub-sea, sialic crust-capped lithospheric collages; (iii) 2.7–1.0 Ga, progressive suturing of old shields + younger orogenic belts led to cratonal plates typified by emerging continental freeboard, increasing sedimentary differentiation, and episodic glaciation during transpolar drift; onset of temporally limited stagnant-lid mantle convection occurred beneath enlarging supercontinents; (iv) 1.0 Ga–present, laminar-flowing asthenospheric cells are now capped by giant, stately moving plates. Near-restriction of komatiitic lavas to the Archean, and appearance of multicycle sediments, ophiolite complexes ± alkaline igneous rocks, and high-pressure–ultrahigh-pressure (HP–UHP) metamorphic belts in progressively younger Proterozoic and Phanerozoic orogens reflect increasing negative buoyancy of cool oceanic lithosphere, but decreasing subductability of enlarging, more buoyant continental plates. Attending supercontinental assembly, density instabilities of thickening oceanic plates began to control overturn of suboceanic mantle as cold, top-down convection. Over time, the scales and dynamics of hot asthenospheric upwelling versus lithospheric foundering + mantle return flow (bottom-up plume-driven ascent versus top-down plate subduction) evolved gradually, reflecting planetary cooling. These evolving plate-tectonic processes have accompanied the Earth’s thermal history since ∼4.4 Ga.

Publisher

Canadian Science Publishing

Subject

General Earth and Planetary Sciences

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3