Affiliation:
1. MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China.
2. College of Earth Sciences, Jilin University, Changchun 130061, China.
3. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China.
Abstract
The Lesser Xing’an Range is located in the eastern segment of the Central Asian Orogenic Belt. It hosts an important polymetallic metallogenic belt that contains more than 20 large- to small-scale porphyry Mo, epithermal Au, and skarn Fe-polymetallic deposits. The Cuihongshan Fe-polymetallic deposit is one of the largest polymetallic deposits in northeastern China. To better understand the formation of the Cuihongshan Fe-polymetallic deposit, we investigated the geological characteristics of the Cuihongshan deposit and applied geochemistry and geochronology to constrain the timing of the mineralization, and characteristics of the magmas. Zircon U–Pb dating of the alkali-feldspar granite and monzogranite yielded weighted mean 206Pb/238U ages of 495 ± 1.6 and 203 ± 1 Ma, respectively. Re–Os dating on molybdenite yielded an isochron age of 203.2 ± 1.4 Ma, and 40Ar/39Ar dating on phlogopite yielded an age of 203.4 ± 1.3 Ma. These data suggest that mineralization occurred during the Late Triassic, and is closely related with the monzogranite emplacement. These rocks belong to the high-K calc-alkaline and subalkaline series, are enriched in Rb, U, and Th, are depleted in Nb, Ta, and Ti, and show strong Eu anomalies, implying that they are A-type post-orogenic rocks. The Cuihongshan Fe-polymetallic formation is possibly related to an extensional environment resulting from the final closure of the Paleo-Asian Ocean.
Publisher
Canadian Science Publishing
Subject
General Earth and Planetary Sciences
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Discovery and Exploration of the Luming Porphyry Mo Deposit, Northeastern China: Implications for Regional Prospecting;Minerals;2024-07-16
2. Genesis and Prospecting Potential of the Da’anhe Skarn Au Deposit in the Central of the Lesser Xing’an Range, NE China: Evidence from Skarn Mineralogy, Fluid Inclusions and H-O Isotopes;Minerals;2024-02-20
3. Numerical Modeling of the Hydrothermal Metallogenic Mechanism Associated with the Ergu Pb-Zn Deposit, Heilongjiang, China: An Example of Pore-Fluid Convection Controlled Mineralization;Minerals;2023-11-10
4. Fluid evolution and genesis of the Sankuanggou Fe Cu skarn deposit, Duobaoshan ore field, Northeast China: Evidence from fluid inclusions and H-O-S-Pb isotopes;Journal of Geochemical Exploration;2023-09
5. Geochronology, geochemistry, and genesis of the Shamai tungsten deposit, Inner Mongolia, NE China;Resource Geology;2023-01