Metabolic and neuromuscular responses at critical power from the 3-min all-out test

Author:

Bergstrom Haley C.1,Housh Terry J.1,Zuniga Jorge M.2,Traylor Daniel A.1,Lewis Robert W.1,Camic Clayton L.3,Schmidt Richard J.1,Johnson Glen O.1

Affiliation:

1. Department of Nutrition and Health Sciences, University of Nebraska-Lincoln, 110 Ruth Leverton Hall, Lincoln, NE 68583-0806, USA.

2. Department of Exercise Science, Creighton University, 2500 California Plaza, Omaha, NE 68178, USA.

3. Department of Exercise and Sport Science, University of Wisconsin-La Crosse, 142 Mitchell Hall, La Crosse, WI 54601, USA.

Abstract

The purpose of this study was to determine the specific metabolic and neuromuscular responses at critical power (CP) from the 3-min all-out test. Nine men (mean ± SD: aged 23.7 ± 3.3 years) performed an incremental test for the determination of peak oxygen consumption (V̇O2peak) and gas exchange threshold. CP was estimated for each subject from the 3-min all-out test. Oxygen consumption (V̇O2), the ventilation versus carbon dioxide production ratio (V̇E/V̇CO2 ratio), electromyographic (EMG) amplitude, and EMG mean power frequency (MPF) were examined during exhaustive rides at CP for each subject. There was no significant difference between the V̇O2 at exhaustion (40.6 ± 7.5 mL·kg−1·min−1) and V̇O2peak (42.9 ± 7.3 mL·kg−1·min−1). Furthermore, there were significant increases in EMG amplitude and the V̇E/V̇CO2 ratio during the exhaustive rides at CP. There was, however, no significant change in EMG MPF over time. Therefore, the current findings indicated that the 3-min all-out test overestimated CP and the demarcation between the heavy- and severe-intensity domains. Specifically, the V̇O2, ventilatory, and EMG amplitude responses were consistent with those observed during continuous exercise in the severe exercise intensity domain. It is likely that the ventilatory and EMG amplitude responses were associated with a common mechanism of fatigue that is different from what affects EMG MPF.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3