Effects of exercise and dietary epigallocatechin gallate and β-alanine on skeletal muscle in aged mice

Author:

Pence Brandt D.12,Gibbons Trisha E.23,Bhattacharya Tushar K.45,Mach Houston45,Ossyra Jessica M.45,Petr Geraldine23,Martin Stephen A.12,Wang Lin56,Rubakhin Stanislav S.56,Sweedler Jonathan V.56,McCusker Robert H.278,Kelley Keith W.278,Rhodes Justin S.45,Johnson Rodney W.237,Woods Jeffrey A.1238

Affiliation:

1. Department of Kinesiology and Community Health, University of Illinois, Urbana, IL 61801, USA.

2. Integrative Immunology and Behavior Program, Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.

3. Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA.

4. Department of Psychology, University of Illinois, Urbana, IL 61820, USA.

5. Beckman Institute, University of Illinois, Urbana, IL 61801, USA.

6. Department of Chemistry, University of Illinois, Urbana, IL 61801, USA.

7. Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA.

8. Department of Pathology, University of Illinois, Urbana, IL 61801, USA.

Abstract

Aging leads to sarcopenia and loss of physical function. We examined whether voluntary wheel running, when combined with dietary supplementation with (−)-epigallocatechin-3-gallate (EGCG) and β-alanine (β-ALA), could improve muscle function and alter gene expression in the gastrocnemius of aged mice. Seventeen-month-old BALB/cByJ mice were given access to a running wheel or remained sedentary for 41 days while receiving either AIN-93M (standard feed) or AIN-93M containing 1.5 mg·kg−1 EGCG and 3.43 mg·kg−1 β-ALA. Mice underwent tests over 11 days from day 29 to day 39 of the study period, including muscle function testing (grip strength, treadmill exhaustive fatigue, rotarod). Following a rest day, mice were euthanized and gastrocnemii were collected for analysis of gene expression by quantitative PCR. Voluntary wheel running (VWR) improved rotarod and treadmill exhaustive fatigue performance and maintained grip strength in aged mice, while dietary intervention had no effect. VWR increased gastrocnemius expression of several genes, including those encoding interleukin-6 (Il6, p = 0.001), superoxide dismutase 1 (Sod1, p = 0.046), peroxisome proliferator-activated receptor gamma coactivator 1-α (Ppargc1a, p = 0.013), forkhead box protein O3 (Foxo3, p = 0.005), and brain-derived neurotrophic factor (Bdnf, p = 0.008), while reducing gastrocnemius levels of the lipid peroxidation marker 4-hydroxynonenal (p = 0.019). Dietary intervention alone increased gastrocnemius expression of Ppargc1a (p = 0.033) and genes encoding NAD-dependent protein deacetylase sirtuin-1 (Sirt1, p = 0.039), insulin-like growth factor I (Igf1, p = 0.003), and macrophage marker CD11b (Itgam, p = 0.016). Exercise and a diet containing β-ALA and EGCG differentially regulated gene expression in the gastrocnemius of aged mice, while VWR but not dietary intervention improved muscle function. We found no synergistic effects between dietary intervention and VWR.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3