Author:
Tripathy Snehasis,Sridharan Asuri,Schanz Tom
Abstract
The swelling pressures of several compacted bentonites (MX80, Febex, and Montigel) proposed for use as barrier materials in storing high-level radioactive waste in many countries were determined from the GouyChapman diffuse double layer theory. The swelling pressures thus determined were compared with the reported experimental swelling pressures. The study revealed that, in general, at low compaction dry densities of the bentonites, the experimental swelling pressures are less than their theoretical counterparts, with the reverse trend at high compaction dry densities. Based on the reported experimental results for the three bentonites, relationships between the nondimensional midplane potential function, u, and the nondimensional distance function, Kd, were established. New equations for the swelling pressure were proposed on the basis of the diffuse double layer theory and the reported experimental data to compute swelling pressures of compacted bentonites. The suitability of the new equations was also verified with additionally reported experimental swelling pressures from three other bentonites (Kunigel V1, Kunigel, and bentonite S-2) that have been also proposed for use as barrier materials. Very good agreement was found in all the cases between the experimental swelling pressures and the swelling pressures obtained using the proposed equations. The use of the proposed equations is based on the weighted average valency of the cations present in bentonites, since the valency of the cations present has a significant influence on the swelling pressure.Key words: clays, compressibility, swelling pressure, expansive soils, chemical properties, radioactive waste disposal.
Publisher
Canadian Science Publishing
Subject
Civil and Structural Engineering,Geotechnical Engineering and Engineering Geology
Cited by
174 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献