Asymmetrically distorted structures of monosilacyclobutane and disilacyclobutane radical cations studied by ab initio and density functional theories

Author:

Cai Z.J.1,Shi Y.J.1

Affiliation:

1. Department of Chemistry, University of Calgary, Calgary, AB T2N 1N4, Canada.

Abstract

The geometrical and electronic structures of a series of six monosilacyclobutane and 1,3-disilacyclobutane radical cations were systematically studied using ab initio and density functional theories. It was shown that all six radical cations possess an asymmetrically distorted structure in their ground electronic states. In the asymmetrically distorted C1 structure of monosilacyclobutane cations, one Si–C bond was elongated and the other was shortened. For the disilacyclobutane cations, two ring bonds were elongated and the other two contracted. The asymmetrical distortion was enhanced by exocyclic methyl substitutions and weakened by endocyclic Si substitution. The unpaired electron was localized mainly in the elongated σ(Si–C) ring bond(s) in all six cations. Studies of the excited electronic states of the cations provided strong support that the asymmetrical distortion in the four-membered-ring cations originates from the second-order Jahn–Teller effect. It was found that the puckered ring structures in the monosilacyclobutane molecules were maintained upon ionization, whereas 1,3-disilacyclobutane cations changed to a planar ring structure. Examination of the potential energy surfaces of all six cations showed that the Si–C ring bond elongation is the main contributor to the significant difference in the geometry change between monosilacyclobutane and disilacyclobutane species upon ionization.

Publisher

Canadian Science Publishing

Subject

Organic Chemistry,General Chemistry,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Four-Membered Rings With One Silicon, Germanium, Tin, or Lead Atom;Comprehensive Heterocyclic Chemistry IV;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3