Net evolution of subglacial sediment transport in the Quebec–Labrador sector of the Laurentide Ice Sheet

Author:

Rice Jessey M.1ORCID,Ross Martin2ORCID,Campbell Heather E.3,Paulen Roger C.1ORCID,McClenaghan M. Beth1ORCID

Affiliation:

1. Geological Survey of Canada, Ottawa, ON, Canada

2. University of Waterloo Earth and Environmental Dept., Waterloo, ON, Canada

3. Geological Survey of Newfoundland and Labrador, St. John's, NL, Canada

Abstract

The Laurentide Ice Sheet's (LIS) interior had a dynamic polythermal base, but the spatiotemporal variations of subglacial processes related to ice divide migration and other transient changes remain largely unknown, limiting our understanding of regional glacial dynamics. Previous studies focused on the regional glacial landform record, while ice sheet models lacked detailed parameterization within these regions, leading to an overestimation of cold-based subglacial conditions' extent and duration. In this study, glacial sediment dispersal patterns as identified by heavy minerals, clasts, and multivariate statistics of till matrix geochemistry were used to assess ice sheet dynamics within the Quebec–Labrador sector of the LIS. The earliest ice-flow phase produced and transported till across the study area (>175 km). However, major oxide data from till matrix geochemistry show a correlation with underlying bedrock, and this relationship is relatively common in areas of thin till cover and resistant bedrock lithologies. These results suggest a switch from an early phase of widespread erosion and long, sustained sediment transport to one of more limited erosion, perhaps abrasion dominant and shorter transport. Till compositional data and related dispersal patterns add supporting evidence to earlier ice sheet reconstructions based on ice-flow indicators and 10Be data together suggesting a transition from widespread uniform warm-based conditions during the earliest ice flow, followed by the development of an ice divide, its migration, and more sporadic warm-based conditions. Consequently, a thorough understanding of ice-flow history is essential for ice sheet modelling and future mineral exploration programs in inner ice sheet regions of the LIS.

Funder

Geological Survey Of Canada

Polar Continental Shelf Program

Northern Scientific Training Program

Ontario Government

Publisher

Canadian Science Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3