Viability of the isolated soleus muscle during long-term incubation

Author:

Alkhateeb Hakam12,Chabowski Adrian12,Bonen Arend12

Affiliation:

1. Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.

2. Department of Physiology, Medical University of Bialystok, 15-089 Bialystok, Poland.

Abstract

Skeletal muscle metabolism has been examined in perfused hindlimb muscles and in isolated muscle preparations. While long-term viability of the fast-twitch epitrochlearis has been documented with respect to glucose transport, it appears that long-term incubated soleus muscles are less stable when incubated ex vivo for many hours. Therefore, in the present study, we have examined whether the isolated soleus muscle remains metabolically viable for up to 18 h with respect to maintaining ATP and phosphocreatine (PCr) concentrations, carbohydrate and fatty-acid metabolism, insulin signalling, and protein expression. Soleus muscles were incubated in well-oxygenated Medium 199 (M199) supplemented with low concentrations of insulin (14.3 µU/mL) for 0, 6, 12, and 18 h. During this incubating period the concentrations of ATP and PCr were stable, indicating that oxygenation and substrate supply were being maintained. In addition, the concentrations of proglycogen and macroglycogen were not altered, whereas an increase (+30%) in intramuscular triacylglycerol concentration was observed at the end of 18 h of incubation (p < 0.05). Complex molecular processes in the long-term incubated muscles were also stable. This was shown by maintenance of basal as well as insulin-stimulated rates of 3-O-methyl glucose transport, and by the maintenance of protein expression of the glucose transporter GLUT4 and the fatty acid transporters FAT/CD36 and FABPpm. In addition, the insulin-stimulated translocation of GLUT4 to the plasma membrane, which involves a complex signalling cascade, was fully preserved. In conclusion, in well-oxygenated soleus muscles maintained in M199 supplemented with extremely low concentrations of insulin, ATP and PCr concentrations, carbohydrate and fatty acid metabolism, insulin signalling, and protein expression were stably maintained for up to 18 h. This provides for opportunities to examine muscle metabolic function under very highly controlled conditions.

Publisher

Canadian Science Publishing

Subject

Physiology (medical),Nutrition and Dietetics,Physiology,General Medicine,Endocrinology, Diabetes and Metabolism

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3